Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts

Abstract

Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal–air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline MxMn3–xO4 (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic MxMn3–xO4 from the reduction of amorphous MnO2 in aqueous M2+ solution. The prepared CoxMn3–xO4 nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co–Mn–O spinels are also interpreted by experiment and first-principle theoretical studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of the synthesized nanocrystalline spinels.
Figure 2: Characterization of CoMnO-B and CoMnO–P.
Figure 3: Electrochemical application of nanocrystalline CoMnO–B and CoMnO–P as ORR and OER electrocatalysts.
Figure 4: First-principle study of surface oxygen adsorption on different sites of cubic and tetragonal spinel phases.

Similar content being viewed by others

References

  1. Hemberger, J. et al. Relaxtor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4 . Nature 434, 364–367 (2005).

    Article  CAS  Google Scholar 

  2. Fan, H. J. et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nature Mater. 5, 627–631 (2006).

    Article  CAS  Google Scholar 

  3. Matsuda, M. et al. Spin-lattice instability to a fractional magnetization state in the spinel HgCr2O4 . Nature Phys. 3, 397–400 (2008).

    Article  Google Scholar 

  4. Bragg, W. H. The structure of magnetite and spinels. Nature 95, 561 (1915).

    Article  Google Scholar 

  5. Shoemaker, D. P., Li, J. & Seshadri, R. Unraverling atomic position in an oxide spinel with two Jahn–Teller ions: local structure investigation of CuMn2O4 . J. Am. Chem. Soc. 131, 11450–11457 (2009).

    Article  CAS  Google Scholar 

  6. Thackeray, M. M. Manganese oxides for lithium batteries. Prog. Solid State Chem. 25, 1–71 (1997).

    Article  CAS  Google Scholar 

  7. Choi, H. C., Shim, J. H. & Min, B. I. Electronic structures and magnetic properties of spinel ZnMn2O4 under high pressure. Phys. Rev. B 74, 172103 (2006).

    Article  Google Scholar 

  8. Fierro, G. et al. H2 reduction behavior and NO/N2O abatement catalytic activity of manganese based spinels doped with copper, cobalt and iron ions. Catal. Today 116, 38–49 (2006).

    Article  CAS  Google Scholar 

  9. Armijo, J. S. The kinetics and mechanism of solid-state spinel formation—a review and critique. Oxid. Met. 1, 171–198 (1969).

    Article  CAS  Google Scholar 

  10. Stein, A., Keller, S. W. & Mallouk, T. E. Turning down the heat: design and mechanism in solid-state synthesis. Science 259, 1558–1564 (1993).

    Article  CAS  Google Scholar 

  11. Wiley, J. B. & Kaner, R. B. Rapid solid-state precursor synthesis of materials. Science 255, 1093–1097 (1992).

    Article  CAS  Google Scholar 

  12. Lavela, P., Tirado, J. L. & Vidal-Abarca, C. Sol–gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochim. Acta 52, 7986–7995 (2007).

    Article  CAS  Google Scholar 

  13. Rojas, R. M. et al. Thermal behaviour and reactivity of manganese cobaltites MnxCo3–xO4 (0.0 < x < 1.0) obtained at low temperature. J. Mater. Chem. 4, 1635–1639 (1994).

    Article  CAS  Google Scholar 

  14. Matsushita, Y., Ueda, H. & Ueda, Y. Flux crystal growth and thermal stabilities of LiV2O4 . Nature Mater. 4, 845–850 (2005).

    Article  CAS  Google Scholar 

  15. Kinoshita, K. Electrochemical Oxygen Technology (Wiley, 1992).

    Google Scholar 

  16. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  17. Lim, B. et al. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).

    Article  CAS  Google Scholar 

  18. Greeley J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    Article  CAS  Google Scholar 

  19. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  20. Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006).

    Article  CAS  Google Scholar 

  21. Rios, E., Gautier, J. L., Poillerat, G. & Chartier, P. Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3–xO4 system. Electrochim. Acta. 44, 1491–1497 (1998).

    Article  CAS  Google Scholar 

  22. Cong, H. N., Abbassi, K. & Chartier, P. Electrocatalysis of oxygen reduction on polypyrrole/mixed valence spinel oxide nanoparticles. J. Electrochem. Soc. 149, A525–A530 (2002).

    Article  CAS  Google Scholar 

  23. Ganem, B. & Osby, J. O. Synthetically useful reactions with metal boride and aluminide catalysts. Chem. Rev. 86, 763–780 (1986).

    Article  CAS  Google Scholar 

  24. Burns, R. G. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochim. Cosmochim. Acta 40, 95–102 (1976).

    Article  CAS  Google Scholar 

  25. Shubin, M. S., Litinskii, A. O., Popov, G. P. & Men, A. N. Cation-distribution preference energy in crystals formed by binary oxides of transition metals with the spinel structure. J. Struct. Chem. 17, 133–138 (1976).

    Article  Google Scholar 

  26. Burdett, J. K., Price, G. D. & Price, S. L. Role of the crystal-field theory in determining the structures of spinels. J. Am. Chem. Soc. 104, 92–95 (1982).

    Article  CAS  Google Scholar 

  27. El-Deab, M. S. & Ohsaka, T. Mangansese oxide nanoparticles electrodeposited on platinum are superior to platinum for oxygen reduction. Angew. Chem. Int. Ed. 45, 5963–5966 (2006).

    Article  CAS  Google Scholar 

  28. Chaînet, I. R., Chatenet, M. & Vondrák, J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physics characterizations and ORR mechanism. J. Phys. Chem. C 111, 1434–1443 (2007).

    Google Scholar 

  29. Yamamoto, K. et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nature Chem. 1, 397–402 (2009).

    Article  CAS  Google Scholar 

  30. Roche, I., Chaînet, E., Chatenet, M. & Vondrák, J. Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium. J. Appl. Electrochem. 38, 1195–1201 (2008).

    Article  CAS  Google Scholar 

  31. Stamenkovic, V. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater. 6, 241–247 (2007).

    Article  CAS  Google Scholar 

  32. Cheng, F. Y. et al. MnO2-based nanostructures as catalyst for electrochemical oxygen reduction in alkaline media. Chem. Mater. 22, 898–905 (2010).

    Article  CAS  Google Scholar 

  33. Ríos, E. et al. Electrocatalysis of oxygen reduction on CuxMn3–xO4 (1 ≤ x ≤ 1.4) spinel particles/polypyrrole composite electrodes. Int. J. Hydrogen Energy 33, 4945–4954 (2008).

    Article  Google Scholar 

  34. Izumi, F. & Ikeda, T. A rietveld-analysis program RIETAN-98 and its application to zeolites. Mater. Sci. Forum 321–324, 198–203 (2000).

    Article  Google Scholar 

  35. Cheng, F. Y. et al. Selective synthesis of manganese oxide nanostructures for electrocatalytic oxygen reduction. ACS Appl. Phys. Interf. 1, 460–466 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Programs of National NSFC (20873071), MOST (2011CB935902), MOE Innovation Team (IRT0927), Tianjin High-Tech (08JCZDJC21300) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

F.C., J.S. and Y.P. synthesized and characterized the materials. F.C. and J.S. carried out electrochemical measurements. B.P. performed the first-principles simulation. All authors contributed to the data analysis. J.C. directed the research.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3871 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, F., Shen, J., Peng, B. et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chem 3, 79–84 (2011). https://doi.org/10.1038/nchem.931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing